Drag forces in the near and distant solar system
نویسندگان
چکیده
Like the solar photons the solar wind particles induce a drag force onto the zodiacal dust grains in the heliosphere. For the distant solar wind with high Mach numbers the drag coefficient is a constant, but close to the Sun, where Mach numbers become small, the drag coefficient is a complicated function of the ion sound speed, density and temperature. We discuss the dynamics of dust particles due to this drag force and compare it with that in the distant solar wind. Especially in the near solar wind the eccentricity varies in a complicated way with the inclination of the orbits, also the semimajor axis decreases faster closer to the Sun. These variations are quite different in the distant solar wind. In addition, we apply an analogous mathematical formalism to the dust dynamics in the outer region of the heliosphere (>20 AU) where the neutral gas density becomes comparable or larger than that of the solar wind plasma. Here the neutral hydrogen gas induces a drag force onto the dust particles similar to the plasma PoyntingRobertson effect. But different to the radial solar wind, the velocity of the interstellar gas is mono-directional, and hence with respect to the inflow direction of the interstellar material this introduces an axial-symmetric force onto the dust particles. This force acts asymmetric in the orbit, and causes the eccentricity to increase fairly fast. The lifetime for dust grains in the Edgeworth-Kuiper Belt is no longer determined by the electromagnetic Poynting-Robertson lifetime, but by that of the neutral gas and is in the order of half a million years for a 10 μm sized particle.
منابع مشابه
Verification of a CFD solver in near ground effect for aerodynamic behavior of airfoil NACA 0015
Numerical investigation was performed on NACA 0015 which is a symmetric airfoil. Pressure distribution and then lift and drag forces are verified. Changing of ground clearance was a considerable point. Also the angle of attack was changed from 0° to 10°. Pressure coefficient reaches its higher amounts on the wing lower surface when the ground clearance diminishes. Increment of the angle of atta...
متن کاملOrbital Perturbation Effect on LEO Satellite Trajectory
A satellite, in its orbit, is affected by perturbing forces, such as atmospheric drag, solar radiation pressure, Earth oblateness, and gravity of the celestial masses (other than the Earth). In this paper, the effects of these forces on the trajectories of different types of LEO satellites and a sample satellite (Z-SAT) are discussed. A few analyses are done on these orbits and the relevant res...
متن کاملComparison of Lift and Drag Forces for Some Conical Bodies in Supersonic Flow Using Perturbation Techniques
Numerical methods are not always convergent especially in higher velocities when shock waves are involved. A comparison analysis is performed to study the supersonic flow over conical bodies of three different cross sections circular, elliptic and squircle (square with rounded corners) shaped using Perturbation techniques to find flow variables analytically. In order to find lift and drag forc...
متن کاملNumerical Simulation of Air Flow around the NP Car Using the Realizable k-ε Turbulence Model to Predict Aerodynamic Forces and Moments
In this study, a numerical computational fluid dynamics study is conducted in order to predict the aerodynamic forces on the NP car. The turbulent air flow around the car is modeled using the realizable k-ε model. First, results are validated against those presented for the Ahmed’s body. Next, the fluid flow around the car is simulated for different car speeds ( to mph) and fl...
متن کاملDynamics analysis of microparticles in inertial microfluidics for biomedical applications
Inertial microfluidics-based devices have recently attracted much interest and attention due to their simple structure, high throughput, fast processing and low cost. They have been utilised in a wide range of applications in microtechnology, especially for sorting and separating microparticles. This novel class of microfluidics-based devices works based on intrinsic forces, which cause micropa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999